全国热线: 4006-777-127
新闻动态
News

制氮机的制氮方式

日期: 2019-09-16 14:27:30
浏览次数: 1176

制氮机的制氮方式

制氮机的制氮方式一共有三种,分别为:分子筛制氮、深冷制氮和膜分离制氮。根据制氮需求不同选择适合的制氮机可以满足用户需求,减少不必要投资。下面瑞气为您介绍3种不同的制氮方式以及选型的注意事项。

分子筛制氮

用碳分子筛(CMS)制氮主要是基于氧和氮在碳分子筛中的扩散速率不同,在0.7~1.0Mpa压力下,即氧在碳分子筛表面的扩散速度大于氮的扩散速度,使碳分子筛优先吸附氧,而氮大部分富集于不吸附箱中。碳分子筛本身具有加压时对氧的吸附容量增加,减压时对氧的吸附量减少的特性。利用这种特性采用变压吸附法进行氧、氮分离。从而得到99%~99.999%的氮气。变压吸附制氮机采用双吸附塔并联交替进行吸附产氮。

深度冷冻法分离的空气经过压缩、冷却、净化后,再利用热交换把空气液化成为液空。根据液氧和液氮的沸点不同,通过对液空的精馏,氧在精馏塔底部富集,形成富氧液空,在精馏塔顶部得获得氮气。

PSA变压吸附和膜分离制氮的工艺流程简单,设备数量少,操作简单,可随时停机,并可长时间停机。深冷制氮不仅工艺流程复杂,设备数量多,且需在深冷低温状态下运行。在设备投入正常运行之前,有一个预冷启动过程,启动时间从膨胀机启动至氮气纯度达到要求的时间一般不小于12h。在设备进入大修之前,必须有一段加温解冻的时间,一般为24h。因此,深冷分离制氮不适宜启、停频繁的场合。膜分离制氮与PSA变压吸附相比,不仅设备结构更简单,而且无切换阀门,操作维护更为简便,产气所需时间也更短。

深冷分离制氮可同时获得气氮和液氮,适宜需要液氮的工艺流程。液氮也可贮存于液氮储槽作为备用,当出现氮气需求短时骤增或制氮设备小修时,可将贮槽内的液氮汽化后送入氮气管网以满足工艺装置对氮气的连续性需求。PSA变压吸附和膜分离制氮变压吸附制氮只能生产氮气,无备用手段,单套设备难以保证工艺装置连续长周期运行。

当氮气纯度体积分数≤97%时,PSA变压吸附和膜分离制氮工艺的氮气提取率基本相当;当氮气纯度体积分数>99%时,采用深冷分离制氮工艺氮提取率最高,PSA变压吸附次之,膜分离制氮工艺氮提取率急剧降低。同时,制取相同压力的氮气,深冷分离制氮空气压缩机出口空气压力与PSA变压吸附制氮相当,而膜分离制氮压力要求空气压力较高。3种制氮工艺主要能耗在空气压缩机,故当制取氮气纯度较高时,膜分离制氮所需空气压缩机规模大,功率高,总能耗最高,PSA变压吸附制氮次之,深冷分离制氮能耗相对较低。

PSA变压吸附制氮的氮气分离吸附-解吸-吸附过程存在压力波动,氮气压力不稳;而深冷分离和膜分离制氮的氮气分离过程为连续进行,产品氮气压力较为稳定。因此PSA制氮必需在PSA吸附塔氮气出口增加氮气缓冲罐,以缓冲氮气,调蓄气体压力,从而保证氮气产品压力的稳定性。

深冷分离制氮设备多,流程长,占地大,投资较高。膜分离制氮与PSA变压吸附制氮相比,所需空气量大,压比高,压缩机规模大,对应的空气净化组件(过滤器、干燥机、除油器等)比PSA变压吸附大,投资高,且制氮核心部件的膜组件的成本也高于PSA吸附塔。因此,PSA变压吸附制氮投资最低。

点击这里给我发消息